

The EPIC project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 760150.

EPICN

Enabling Practical Wireless Tb/s Communications with Next Generation Channel Coding

FEC Bottleneck in Beyond-5G Wireless Tb/s

Forward-Error-Correction (FEC) belongs to the most complex and

Holistic FEC Design

EPIC pursues a holistic approach: joint consideration of information theory, code design, algorithms/ architecture co-design, front/back-end

CHALLENGES

Energy efficient
 high throughput
 architectures →

computationally intense component in the baseband chain

 $3G \rightarrow 4G \rightarrow 5G$ baseband and FEC implementations heavily took advantage of progress in microelectronics driven by Moore's law: smaller area, lower power consumption, higher clock frequency

However, Moore's Law Slow-down:

- Power and power density will emerge as a binding constraint
- Clock frequency larger than 1 GHz will not be feasible due to power constraints, but at the same time increasing throughput requirements
- Power constraint combined with ever increasing throughput requirements → energy efficiency will be critical (J/bit)

Practical Wireless Tb/s FEC Requirements

- Meet the communication performance requirements for Beyond-5G use cases
- >1 Tb/s throughput (in 7nm)
- ~ 10 mm2 chip area for FEC IP block
- ~ 1 Watt Power envelope
- ~ 1 GHz clock frequency limit

Code	Decoding algorithms	Parallel vs. serial Locality		Compute kernels	Transfers vs. compute			
Turbo code LDPC code	MAP Belief propagation	serial/iterative parallel/iterative	low (interleaver) low (Tanner graph)	Add-Compare-select Min-Sum/add	compute dominated transfer dominated			
Polar code	Successive cancelation/List	serial	high	Min-Sum/add/sorting	balanced			
$VNU1 VN2 VN3 VN4$ $y_{1} + WAP1 + WAP2 + WAP2 + WAP2 + WAP2 + UT + U$								

Key Methodology

PRACTICAL B5G TBPS FEC KPI BOUNDS

Chip area limit	~ 10 mm ²			
Area efficiency limit	~ 100 Gb/s/ mm ²			
Energy efficiency limit	~ 1 pJ/bit			
Power density limit	~ 0.1 W/mm ²			

Many Trade-Offs between code design, decoding algorithms, architecture, communications performance

First EPIC High-Throughput Decoder Implementations

All designs in 28nm low Vt FDSOI technology, worst case PVT

Code	Blocksize [bit]	Code rate	Frequency [MHz]	Throughput ¹ [Gbit/s]	Area [mm ²]	Power [mW]	Area efficiency [Gbit/s/mm ²]	Energy efficiency [pJ/bit]
Turbo code (4 iter)	128	1/3	800	102	23.6	-	4.34	-
LDPC code (4 iter)	1200	4/5	400	480	2.79	3000	172	6.3
Polar code	1024	1/2	746	764	2.95	3300	259	4.4

- Set up design space for each code class containing all design parameters → huge design space
- Design space exploration (DSE) to prune the design space under EPIC KPI constraints
- Select most promising candidates to derive new FEC solutions

480 Gbit/s LDPC decoder. The area is 2.79mm². Each color represents check and variable node functional units corresponding to one iteration (4 in total). 764 Gbit/s Polar decoder. The area is 2.95mm². Each color represents a pipeline stage (105 in total), memory is colored black

> Project Coordinator MMag. Martina Truskaller Technikon Forschungs- und Planungsgesellschaft mbH Email: coordination@epic-h2020.eu Web: www.epic-h2020.eu

Technical Leader Prof. Dr.-Ing. Norbert Wehn Techische Universität Kaiserslautern Email: wehn@eit.uni-kl.de

