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Executive Summary 

In WP2, an exhaustive design space exploration for each code family was performed, from which 
the most promising combinations of design parameters were identified in D2.1 [1] and D2.2 [2] to 
meet the EPIC requirements. Based on these, promising architectural templates were also 
implemented at register-transfer level (RTL) and thoroughly described in D2.3 [3]. On the other 
hand, while most of WP4 focuses on the validation and implementation feasibility of these 
architectures in different advanced technology nodes, it is also important to validate and verify 
them in terms of their error correction performance. For this purpose, WP4 has laid out a 
verification approach based on field-programmable gate arrays (FPGA), which allows the 
measurement of very low error rates with a low computation time cost. 

This work is therefore the result of the approach mentioned above and describes the mapping of a 
few selected architectures onto FPGA, enabling bit error rate (BER) measurements down to 10-10 
and lower. In order to achieve this, the selected pairs of encoder and decoder have been 
integrated into a complete hardware simulation chain, creating a fast and efficient environment to 
carry out testing and measurement of their performance. The presented work also complements 
the communications performance assessments of WP3.  

Several aspects had to be considered prior to the execution of this task, which included the actual 
selection of architectures for verification.  Due to constrained workload resources, it was deemed 
unfeasible to implement all the architectures investigated in WP2, since the development of an 
adequate hardware simulation environment is already a rather laborious endeavour for one target 
architecture. Therefore, the partners involved in the actual implementation process agreed upon a 
few decoder designs, after preliminary discussions took place. The selected architectures include 
the low-density parity-check convolutional codes (LDPC-CC) unrolled window decoder, whose 
verification was undertaken by the partner CRE.  Likewise, two polar decoder architectures had 
also been selected, whose implementation was carried out by the partner POL. 

The following document lays out a description of this work and the developed simulation chains in 
Chapter 2 and Chapter 3. The verification results show a close correspondence with those from 
preliminary software simulations, while also complementing the latter with further simulation of 
lower error rates at higher signal-to-noise ratios (SNR). As a consequence, the hardware 
simulations, and thus the performance assessments carried out in this work are able to reach 
beyond the scope of what is feasible with software simulations, as initially intended.  

Additionally, the FPGA verification systems developed in this work have also served an additional 
purpose in WP5 during the second half of the project as dissemination tools in various relevant 
industry- and academic-related events.  These served as FPGA demonstrators, showcasing some 
of the preliminary results of the project in a physical medium that the general public could also 
appreciate. These dissemination activities have been documented in D5.5 [4]. The FPGA 
intellectual property (IP) cores developed in this task will also serve as a basis for several high-
performance stand-alone encoder/decoder products for the FPGA segment of the forward error 
correction (FEC) market. 
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Chapter 1 Introduction 

The bit error rate (BER) is one fundamental performance metric of the design and implementation 
of practical and efficient FEC solutions.  Its significance is directly tied to the increasing demand for 
higher throughput, as errors can occur more often, the more data is transmitted in a given unit of 
time, thus creating more stringent BER requirements. For example, assuming an average of one 
erroneous bit every second as acceptable, the maximum permitted BER approaches 10-12 at 
throughputs approaching the intended 1Tb/s of EPIC. Therefore, it is important to verify the 
developed EPIC designs’ error correction performance at those levels, in order to assess their 
feasibility under these requirements.  However, this poses a practicality problem for software-
based simulations, being the standard method of verification, as these error levels require non-
practical amount of time to compute.  Furthermore, to get BER measurements as low as 10-12, 
more than 1012 bits must be at least simulated just for one simulation scenario, which can take 
several weeks or even months of computation. 

For these reasons, the motivation arises for using FPGA verification as a mean to simulating low 
BERs in a feasible amount of time. With this approach, parallel and concurrent behaviour can also 
be implemented and exploited to drastically speed up simulations, thereby reducing simulation 
times by several orders of magnitude, as well as facilitating measurements of BERs in the order of 
10-10 and lower.  In this way, FPGAs become a powerful prototyping and verification tool, closing 
the gap between application-specific integrated circuits (ASIC) and software-based verification. 

This report describes the development and implementation of several of these FPGA simulation 
platforms, with the intent of verifying some of the EPIC designs for Polar and LDPC codes.  
Likewise, this endeavour has also served as a tool for showcasing the results and achievements 
obtained throughout the project’s results, in sundry venues of academic and industrial relevance.  
These developments also have the underlying purpose of validating the feasibility of EPIC designs 
as viable and marketable products in the IP core and FPGA industry. 
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Chapter 2  LDPC Code 

2.1 Simulation Chain 

The simulation chain aims to verify the error correction performance of the FEC architecture, 
enabling BER measurements down to 10-10, while also assessing aspects such as throughput and 
latency under an actual hardware environment.  As the targeted architecture exhibits a high degree 
of parallelism and throughput, so do the rest of the chain’s components, to ensure these don’t 
experience any bottlenecks that might affect the performance assessments during simulations.  To 
achieve this, all chain components are fully pipelined and mapped onto the same FPGA chip, to 
avoid throughput and/or latency limitations with any FPGA interfaces. 

This implementation is mapped onto a Xilinx Virtex Ultrascale+ FPGA, which has the necessary 
hardware resources to accommodate the entire chain. Configuration and reading of the 
performance measurements from the FPGA is done with a universal asynchronous receiver 
transmitter (UART) interface, through which a computer controls the execution. 

 

Figure 1. Simulation chain of the LDPC-CC window decoder 

Figure 1 is a high-level representation of the simulation chain implemented onto the FPGA. The 
set-up is comprised of the minimum components necessary to model a transmission chain and 
therefore it does not contain any interleaving, hybrid automatic repeat request (HARQ) 
components nor similar. This simplified approach removes the influence of these FEC enhancing 
components, and puts the focus onto the decoder itself, as this is the design whose performance is 
to be verified in the first place. Furthermore, this simplification drastically reduces the 
implementation complexity. A more detailed description of the simulation chain’s component is 
presented in the following sub-sections. 

2.1.1 Test Data Generation 

The simulation chain employs a hardware-wise low-cost method for generating random test data, 
which consists of a Galois Linear Feedback Shift Register (LFSR) of 256 bits, initialized with a 
unique seed.  To ensure that the produced sequence of random numbers is long enough, a 
feedback polynomial has been chosen [5], which theoretically maximizes the period length to 2n-1 
values, with n being the number of bits.  Under these parameters, and assuming a clock frequency 
of 100MHz, the generated sequence of pseudo-random numbers has a period of approximately 
1.1x1077 clock cycles or 3.6x1061 years.  This is clearly enough for the purposes of this application.   
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2.1.2 Encoder and Decoder 

The center piece of the simulation chain is the unrolled window-based LDPC-CC decoder (also 
referred to as spatially-coupled LDPC (SC-LDPC) decoder hereafter), whose architecture and 
decoding algorithm has been described in [2] and [3].  An implementation of this decoder has been 
optimized for virtual silicon tape-out and subsequently synthesized in 22nm fully depleted silicon on 
insulator (FD-SOI) technology featuring a window size, i.e. number of decoding iterations, fixed to 
5 with a code-length of 80 sub-blocks of 1280 bits and a code-rate of R=4/5.  The corresponding 
synthesis results were reported accordingly in the RTL implementation report [6].  However, it was 
unfeasible to map this design with the rest of the simulation chain onto one FPGA, due to several 
reasons. 

In the first place, the intrinsic routing complexity and amount of parallelism made placing and 
routing the design onto the fixed layout of the FPGA a challenging task, which ultimately exhausted 
all available hardware resources, leaving no room for the rest of the chain.  Furthermore, the 
amount of parallelism would have also impacted the rest of the chain components in a similar way, 
further increasing the required hardware resources, as it is explained in the following subsections.  
Therefore, a more conservative design was selected for this work, which featured the same 
decoding algorithm and architecture as the aforementioned implementation.  The code 
construction method, as well as the number of decoding iterations (window side) have likewise 
remained the same.  On the other hand, the code- length and rate were reduced for this 
implementation, which drastically reduced the amount of hardware resources, and allowed the 
entire simulation chain to be mapped onto a single FPGA.  The code-rate is then equal to R = 1/2, 
while the code-length is equal to 40960 bits, divided into 80 sub-blocks of 512 bits entering the 
decoder every clock cycle. 

The encoder and decoder work in a stream-like fashion, whereby data is expected to be 
continuously transmitted, as it is needed for spatially coupling it along the stream, as SC-LDPC 
suggests.  Therefore, every clock cycle, each sub-block within a frame carries information, which is 
partly utilized for decoding of the next one, hence each sub-block is “coupled” with its successor.  
This characteristic enables the implementation of large code-lengths, such as those mentioned 
before.  On the other hand, this also implies the exchange of information between consecutive 
frames for the same purpose, which the encoder transmits on the last sub-block of the frame.  
Consequently, the encoder defines the frame boundaries using an additional signal to flag the last 
of the 80 sub-blocks, indicating the start of a new frame thereafter.  This signal is thus propagated 
along the chain’s pipeline to be used by the decoder, as well as the data comparison component, 
to determine the number of simulated frames. 

2.1.3 Mapper and De-mapper 

The mapping and de-mapping process plays an important role in the development of the complete 
on-chip simulation chain, not only in terms of performance, but also in computational complexity, 
hardware resources, and thus implementation feasibility.  Arguably the most conspicuous feature 
of the FEC architectures in this simulation chain is the high level of parallelism.  This translates into 
the mapping of a proportional number of parallel symbols, processed by the additive white 
Gaussian noise (AWGN) channel and later by the de-mapper. 

Higher modulation schemes would mean a fewer number of parallel symbols.  However, these are 
more computationally intensive, thus potentially compromising the overall speed and performance 
of the chain.  An analogue compromise also occurs in the opposite way, whereby a lower 
modulation scheme would be less computationally intensive, nevertheless with a larger number of 
parallel symbols. This, on the other hand, would mean a larger amount of hardware resources, not 
only for the mapping and de-mapping components but also for the AWGN channel, resources 
which would otherwise be needed to allocate the decoder design.  Taking these criteria into 
account, the quadrature phase shift keying (QPSK) modulation scheme has been selected.  This 
serves as a good compromise for this chain’s implementation, whereby mapping and de-mapping 
is not too complex, while still halving the number of symbols required, compared to binary phase 
shift keying (BSPK) and its variants. 



D4.4 – FPGA Verification Report  

EPIC D4.4 Public Page 4 

The optimum quantization of the mapped and de-mapped symbols proved to be a decisive aspect 
of the chain’s overall performance, particularly the number of fractional bits at each of these ends.  
The final quantization parameters for this chain were chosen as a good compromise between 
hardware constraints and accuracy after an initial assessment of these in preliminary software 
simulations.  Therefore, the encoded bits were mapped into blocks of 256 symbols, whose in-
phase/quadrature (I/Q) components consist of 12-bits two’s complement integers with 11 fractional 
bits.  Likewise, the input symbols of the de-mapper consist of 12-bit I/Q components with 8 
fractional bits.  In this case, additional bits were added to the integer part with respect to the 
mapped symbols to account for the added noise from the channel.  Finally, the log-likelihood ratio 
(LLR) values coming from the de-mapper are represented using 6-bit two’s complement integers 
with 2 fractional bits. 

2.1.4 Channel (AWGN) 

An AWGN channel is used as the source of noise for the data in the chain.  Since practical 
assessment of performance at very low error rates is one of the main motivations for this 
hardware-accelerated simulation chain, the channel must exhibit a good degree of accuracy.  On 
the other hand, a parallel and efficient implementation of the channel is also required, due to the 
high level of parallelism and throughput mentioned earlier.  Together with fixed-point integer 
representation of data, these contrasting aspects converge into an implementation challenge, 
which seeks an efficient low-complexity design with little loss of accuracy. 

This implementation uses a proprietary IP core from the partner Creonic GmbH, consisting of an 
AWGN channel designed using independent noise generators for each input symbol.  These have 
been fully pipelined to meet the desired throughput, while keeping a reasonable amount of 
hardware resources.  Similar to the test data, the noise generation starts with LFSRs of 64 bits 
initialized with a unique random seed, which create samples with a uniform distribution.  Likewise, 
the feedback polynomial has been chosen to achieve the maximum period length of 264-1 samples, 
which suffices for this application.  These samples are subsequently processed to obtain the noise 
with the desired normal distribution, using an implementation based on the Box-Müller algorithm 
[7].  The resulting noise is normalized according to the SNR configuration and then added to the 
corresponding symbol.  The channel supports a wide range of SNRs with a resolution of 0.1dB 
(Es/N0).  The SNR value can be configured at any moment during run-time.  Alternatively, the 
channel can also be switched between normal operation and bypass mode, where in the latter no 
noise is added to the original data.  Much like the mapper and de-mapper, the input and output 
symbol quantization of the channel is also fully parametrizable at design-time. 

 

Figure 2. BER curves for uncoded transmission with AWGN channel and QPSK modulation 
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The previous figure shows a comparison between the theoretical bit error probability for QPSK [8] 
modulation and the measured BER of the AWGN channel implementation used in this work, across 
a range of SNR values.  For these measurements, the encoder and decoder were removed from 
the simulation chain, leaving the mapper, channel and de-mapper as the only active components in 
it.  Additionally, the channel configured for processing 256 symbols in parallel, with the quantization 
described in section 2.1.3. The results show that these components exhibit the expected behavior 
and a high degree of accuracy under these parameters, which means little additional error is 
introduced into the final system and thus into the final performance assessment of the decoder. 

2.1.5 Data Comparison and Performance Measurements 

Finally, the end-point of the chain receives the decoded data, which is compared against a 
reference in order to get the frame error rate (FER) and BER measurements.  Just like the other 
end of the chain, the reference data is also generated with a Galois LFSR, which has been 
initialized with a seed identical to that of the source. However, the reference Galois LFSR is only 
activated every time a new block of decoded data has arrived, hence keeping decoded and 
reference data synchronized.  Having these two pseudo-random number generators with identical 
seeds is advantageous, as it eliminates the need of a pipeline-long first-in first-out (FIFO) memory 
to forward the source data to the end of the chain, and gives to the synthesis tool a little more 
freedom to place and route the design onto the chip. 

The reference and decoded date are compared on a bit-by-bit basis, whereby the number of 
erroneous bits is incremented for every bit-mismatch in the comparison.  This is done for every 
incoming sub-block of data, every clock cycle.  On the other hand, since one frame is comprised of 
several sub-blocks of bits, the number of erroneous frames is only incremented if there have been 
any bit errors during the current frame by the time the last block has been compared.  Adjacently, 
the number of simulated frames is also updated for every incoming frame, regardless of bit-errors. 

An execution control mechanism has also been built into this component, where the current 
execution of a certain configuration scenario is stopped upon reaching a maximum number of 
erroneous frames.  To do so, the maximum number of simulated frames, as well as a threshold of 
erroneous frames are configured prior to execution, with the latter being considerably lower.  With 
these parameters, the simulation doesn’t have to run through the maximum number of frames, if 
enough erroneous ones have been recorded. This aids to reduce unnecessary simulation time, at 
lower SNR values, where errors can occur more often. 

2.2 Results 

The following table offers a short summary of the parametrization of the components present in the 
simulation chain.  This offers a hint of the influence of these parameters on the overall accuracy of 
this set-up, from the perspective of the communication’s performance.  Notice that the type and 
quantization of the mapper, channel and de-mapper are decisive in this regard. 

Table 1. Summary of the simulation chain's components 

 Data 
source 

Encoder Mapper AWGN 
Channel 

De-mapper Decoder 

Type LFSR SC-LDPC QPSK Box-Müller QPSK SC-LDPC 

Parallelism 256 (bits) 512 (bits) 256 (symbols) 512 (LLRs) 256 (bits) 

Quantization 1 12 

(11fract. bits) 

12 

(8 fract. bits) 

6 

(2 fract. bits) 

1 
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2.2.1 Implementation Results 

Table 2 contains the results of synthesis, place and route of the encoder and decoder on the 
selected FPGA.  In terms of complexity, there is a clear absence of more specialized hardware 
resources, such as block RAMs (BRAMs) or multipliers, in both designs’ implementations, only 
utilizing look-up tables (LUTs) and flip-flops (FFs) as their building components.  Although this 
could give the impression of a mostly combinational architecture with low complexity, the greater 
source of complexity comes not only from the amount of resources but from the routing congestion, 
as indicated in Section 4.3 of [6].  Unlike an ASIC implementation, this is a particularly more 
complex task on FPGAs, since the architecture’s components must be placed and routed onto a 
fixed FPGA layout.  For this reason, the routing congestion is also prominent in this work, as there 
is no absolute freedom for placing and routing hardware resources, without incurring into longer 
critical paths and timing violations.  As a consequence of these factors, the working frequency had 
to be drastically reduced to 100MHz, affecting the throughput as well. 

Table 2. Complexity of LDPC-CC encoder/decoder at 100MHz on xcvu9p-flga2104-2L-e 

 LUTs FFs 

Encoder 1198 (0.1%) 2858 (0.12%) 

Decoder 412935 (34.92%) 198401 (8.39%) 

On the other hand, the RTL description of the designs used in this work features no FPGA-specific 
optimizations, since it is primarily intended for an ASIC implementation.  Furthermore, this work 
has sought primarily to aid in the verification of decoder architectures for silicon tape-out, and 
tinkering with it in this matter would essentially change the target design, invalidating the 
verification to some extent.  Despite all this, the results show great potential for this design to 
become a viable IP block for FPGA applications.  With this objective in mind, factors such as long 
critical path and timing constraints could be significantly improved with an RTL description that 
better fits a FPGA architecture and its available components. 

2.2.2 Error Correction Performance 

Figure 3 offers a look into the simulation results of both the software- and hardware-based chains, 
as well as a comparison thereof.  For this work, a preliminary software simulation was carried out 
as the baseline for comparing and validating the FPGA implementation.  The software simulation 
features the same chain set-up depicted in Figure 1, as well as an almost identical parametrization 
as its FPGA equivalent.  Nevertheless, several minor details are still different, such as the type of 
source data and random Gaussian noise generators, although they have the same behaviour as 
their hardware counterpart (see Section 2.1.4). 

Error rate measurements took place within a SNR range of 0 dB to 12 dB, with increments of 0.2 
dB between every consecutive measurement.  For each of these measurements, the chain was 
configured to simulate a maximum of 100,000,000 frames, with a threshold of 100 erroneous 
frames as an early-stop condition.  As explained in Section 2.1.5, this drastically reduces the 
computation time, when simulating at lower SNR values, where errors occur more often.  On the 
other hand, the software simulation exhibits the same configuration, but spans a shorter SNR 
range of 8 dB.  Simulating beyond this value would have meant protracted computational times, 
spared by the FPGA set-up, as intended with this work.  As an additional remark, the hardware-
based simulation featured a total runtime of about 10 minutes. 
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Figure 3. Error correction performance of the LDPC-CC window decoder with N=40960, R=1/2 

The comparison shows a close correspondence between the software and hardware simulation’s 
results, as evidenced by the overlap of both sets of curves. The results also show that the window 
decoder achieves a BER of 10-12 at just shy of 12 dB, which is congruent with the initial EPIC 
goals. On the other hand, it is important to note that, despite the decreasing BER, the FER remains 
equal to 1 until about the 5 dB mark.  This can be explained while considering the actual frame 
length. Although the decoder outputs 256 bits every clock cycle, the actual frame is comprised of 
80 of these sub-blocks.  However, the end-point of the chain counts one frame error, if at least one 
bit out of the 80 sub-blocks is erroneous. Therefore, it is more likely to count frame errors during 
the simulation, the longer the frame becomes. Hence this is one of the characteristics of the 
convolutional nature of the SC-LDPC.  
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Chapter 3 Polar Code 

The EPIC project aims to develop a power efficient high throughput FEC solution for wireless 
systems. Although the final output of the project is going to be on ASIC; FPGA test systems are 
required to verify very low error rates. For testing the polar code systems, an end-to-end simulation 
chain is developed and used with two different polar decoders, successive cancellation (SC) for 
block length N=1024 and data length K =854 (SC (1024,854)); and successive cancellation list 
(SCL) of two for block length N=1024 and data length K=888 (SCL2 (1024,888)) aided with 4 bits 
of cyclic redundancy check (CRC).  The components of the simulation chain are explained in 
Section 3.1. Results of the solutions, both in terms of complexity and communication performance 
are presented in Section 3.2. 

3.1 Simulation Chain 

The purpose of the simulation chain is to check the correctness of the system and, if the system is 
working properly, measure the communication performance of the decoder at very low error rates. 
Speed of the simulation chain is important for two main reasons. First, if the throughput is higher, 
measuring the communication performance of the system for very low FER/BER values takes 
relatively less time. More importantly, there is a high correlation between the achievable throughput 
on FPGA and ASIC; an architecture with high throughput on FPGA translates to high throughput 
on ASIC. 

The FPGA simulation chain for polar code is implemented on Xilinx Virtex Ultrascale+ FPGA chip 
and reaches 200 Gb/s net throughput. Simulation chain is fully pipelined, and every component of 
the chain implemented on chip, otherwise reaching such high throughputs would be near 
impossible due to limited throughput at the FPGA interface. The components of the simulation 
chain and their sequential order can be seen in Figure 4. Following sections explain these 
components.  

 

Figure 4. Simulation chain of the SC/SCL polar decoders 

3.1.1 Test Data Generation 

First step of the simulation chain is creating random test inputs which is done by 32-bit LFSRs. We 
use X32+X22+X2+X1+1 [9] feedback polynomial for achieving maximum length feedback. In this 
case maximum length is 4294967295 (232-1), after 4294967295 clock cycles LFSR starts to repeat 
itself.  Although this can occur within a simulation point at very low error rates, it has no effect on 
performance since polar codes are linear and consequently performance is data independent.  
These randomly generated inputs are fed into the polar encoder and written in a FIFO memory at 
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the same time. After the delay in the actual data path, the FIFO output is compared with the output 
of the system to calculate FER and BER.  

3.1.2 Encoder and Decoder 

The polar code solutions in EPIC employ a systematic encoder [10], as these achieve a better 
communication performance compared to non-systematic encoder without any significant increase 
of hardware complexity. The polar encoder is a small circuitry which can be easily implemented in 
single clock cycle. We use an unrolled architecture to simplify and speed up the encoder.  If the 
system is aided with CRC, one clock cycle is also required for encoding the CRC bits. After CRC 
bits are encoded, all the data bits and CRC bits are encoded with the systematic polar encoder. 
The SCL2 (1024, 888) polar decoder uses 4 bits of CRC, meaning 892 bits are encoded with polar 
encoder. CRC polynomial is chosen as x4+x3+x2+x+1 [11]. 

On the other hand, the decoder is the main output of the EPIC project and the most complex 
module of a FEC solution. Other components of the simulation chain are present to aid in 
measuring the performance of the decoder. Naturally, most of the engineering effort is used toward 
researching and developing (R&D) the algorithms and architectures of the decoders. After this 
R&D study has matured, an automated tool was developed for writing the VHDL code of the 
decoders. This tool can easily and quickly generate SC and SCL2 decoders with different block 
lengths, code rates and designs. This work presents two example decoders from this vast array of 
possible solutions 

3.1.2.1 SC (1024, 854) 

SC is a very low complexity decoding algorithm for polar codes. It has a sequential structure which 
promotes the use of pipelining to reach high throughput. The latency of the original SC algorithm is 
equal to 2*N-2 in fully pipelined form, thanks to its sequential structure. A higher latency also 
increases the amount of memory required for buffering as well. However, simple arithmetic and 
clear flow of the decoder allow the optimization of this and many other aspects. These 
optimizations include parallel decision shortcuts [12], [13], [14], which helped reducing both 
complexity and latency and thus memory consumption, translating into a significant improvement. 
To reduce the complexity even more, advanced quantization and register balancing methods were 
also developed [15].  The latency of the decoder dropped to 60 from original latency of 2046 clock 
cycles after applying these, which made the complexity of the decoder small enough, so that whole 
simulation chain could fit into the FPGA chip. 

3.1.2.2 SCL2 (1024, 888) aided with CRC 

SCL decoders [16] offer better communication performance compared to SC. Especially if SCL is 
aided with CRC, it performs considerably better [16].  However, this increment in performance 
comes with a cost of increased implementation complexity.  SCL has very similar structure and 
architecture to SC and thus exhibits high latency and potentially high memory consumption as well, 
which can be solved in similar manners. Usage of parallel bit decision short cuts stays the same, 
but algorithms used for shortcuts differ [17], [18]. Likewise, this work utilizes register balancing for 
SCL as well. After applying these optimizations, the latency of the decoder dropped to 64 from 
original latency of 2046 clock cycles.  

3.1.3 Mapper and De-mapper 

Encoded bits are mapped to BPSK data symbols as follows. An encoded “0” bit is mapped to a 16-
bit “+1” symbol with 8-bit fractional values using fixed point arithmetic. Similarly, an encoded “1” bit 
is mapped to a “-1” symbol.  The encoded bits are corrupted with noise while going through the 
AWGN channel. In order to achieve best performance, we de-map the noisy encoded bits with soft 
quantization, which means they are quantized with more than one bit. Our simulation chain uses 
only 5 bits to minimize the performance loss because of quantization while keeping the complexity 
in check.  The de-mapper truncates the noisy encoded bits to 5-bit LLR values with 3 fractional 
bits, represented in signed magnitude format. 
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3.1.4 Channel (AWGN) 

The AWGN channel is implemented on the chip like the rest of the simulation chain to satisfy the 
throughput requirements. One of the aims of the simulation chain is to test the performance of the 
decoder at very low FER/BER (e.g. 10-15 BER). To be able to test the decoder at such low error 
rates, tails of Gaussian noise should exhibit a high degree of accuracy in order to simulate high 
SNR values. Therefore, the Gaussian number generator (GNG) of this simulation chain is 
developed by combining three 32-bit LFSR systems. The generated noise is represented with 16 
bits; 11 of which are fractional. The standard deviation of the Gaussian distribution is ±9,1. Lastly, 
the generated Gaussian noise is scaled according to the desired SNR and added to the encoded 
and mapped bits.  

Figure 5 illustrates the performance curves for uncoded transmission, showing two different GNGs 
implemented on two different FPGAs. The number after the GNG represents the parallelism level 
of the GNG e.g. GNG-16 means there are 16 GNG are employed in parallel starting from 
calculated different initial seeds to increase the throughput. The BER performance curves show 
that the performance of GNG does not deteriorate as parallelism level increases. The simulation 
chains of the SC (1024, 854) and SCL2 (1024, 888) utilizes GNG-1024 in order to cope with the 
throughput of the system.  

 

Figure 5. BER curves for uncoded transmission with AWGN channel and BPSK modulation 

3.1.5 Data Comparison and Performance Measurements 

The generated input data stored in a FIFO memory is used in this step. The output of the decoder 
is compared bit by bit with the corresponding input values. If they are not the same, the frame error 
number is increased by one and the bit error number increased by the number of bits that are 
different between the input and output data.  

3.2 Results 

3.2.1 Implementation Results 

Table 3, Table 4 and Table 5 present the implementation results in terms of LUTs, FFs and 
BRAMs.  As it can be seen from the tables, any of the decoders consumes at most the 16% of the 
FPGA, therefore they can easily fit into the Xilinx Virtex Ultrscale+ (xcvu37p-fsch2892-2L-e-es1) or 
even smaller FPGAs. Much smaller FPGAs can also be used for SC (1024,854) as its complexity 
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is much lower than that of the SCL2 (1024, 888) decoder. However, as it will be presented in the 
next section, SCL2 (1024, 888) has better error correction performance.  

Complexity values are presented for two different implementations of SC (1024, 854) in Table 3 
and Table 4. It can be seen from the tables that, there is a trade-off between complexity of the 
decoder and the maximum achievable frequency. It is possible to increase the operating frequency 
of the simulation chain by adjusting the parameters of the shortcuts and register balancing 
technique.  

Table 3. Complexity of SC (1024,854) running at 120 MHz on xcvu37p-fsch2892-2L-e-es1 

 LUT FF BRAM 

Encoder 1,842 (0.14%) 1,825 (0.07%) - 

Decoder 53,247 (4.08%) 35,192 (1.35%) 136 (6.75%) 

 

Table 4. Complexity of SC (1024,854) running at 250 MHz on xcvu37p-fsch2892-2L-e-es1 

 LUT FF BRAM 

Encoder 1,842 (0.14%) 1,825 (0.07%) - 

Decoder 95,653 (7.34%) 50,700 (1.95%) 72 (3.55%) 

 

Table 5. Complexity of SCL2 (1024,888) aided with 4 bits CRC on xcvu37p-fsch2892-2L-e-es1 

 LUT FF BRAM 

Encoder 1,884 (0.16%) 1,918 (0.08%) - 

Decoder 190,084 (16.08%) 63,528 (2.69%) 108 (4.98%) 

As shown in Table 3 and Table 5, even though SCL2(1024,888) is more complex than the 
SC(1024,854); the number of BRAMs used in SCL2 is less than in SC. Using BRAMs on FPGAs 
increases the routing complexity, as already mentioned SCL2(1024,888) is a more complex design 
and thus routing for SCL2(1024,888) is harder. Therefore, using the FFs instead of BRAMs makes 
routing the design easier. Thus, utilizing BRAMs or FFs is a design choice which does not 
necessarily shows the complexity of the design.  

3.2.2 Error Correction Performance 

At the end of the simulation chain, the output of the decoder is compared with the corresponding 
input bit by bit. Result of every comparison is saved and stored. This comparison is performed 
repetitively for each SNR value of interest. This Monte Carlo simulation provides us with 
communication performance of the decoder for different SNR values. Communication performance 
of both decoders SC(1024,854) and SCL2(1024,888) aided with 4 bits CRC is given in Figure 6 
and Figure 7 respectively.  

Error correction performance of the decoders on software are also provided in the figures to show 
the performance loss due to quantization.  
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Figure 6. Error correction performance of SC (1024,854) 

 

Figure 7. Error correction performance of SCL2 (1024,888) aided with 4 bits CRC 

To sum up, polar code simulation chain consists of polar encoder, polar decoder and AWGN 
channel IP cores and supporting components such as mapper, de-mapper etc. Simulation chain 
can reach 200 Gb/s net throughput on Xilinx Virtex Ultrascale+ FPGA. Our automated tool can 
create polar encoder and decoder designs that are compatible with the simulation chain with 
various block sizes and code rates. These designs reach very high throughputs with low hardware 
complexity.  
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Chapter 4 Summary and Conclusion 

This work has presented the implementation of various FPGA simulation environments for some of 
the decoder designs and architectures investigated during the EPIC project.  These simulation 
environments allowed a rapid and efficient verification of the selected designs, as well as the 
assessment of their communication performance at lower error rates than it is currently practical 
and feasible with just traditional software simulations.  All the implemented FPGA simulation chains 
in this work exhibited a significant reduction of the simulation time by several orders of magnitude, 
compared to software counterparts.  The loss of error correction performance is due to limited 
quantization of LLR values, which will be the actual case for an ASIC implementation as well.  This 
has made them powerful prototyping and validation tools for FEC designs, closing the gap between 
ASIC and software verification. 

With respect to the LDPC-CC window decoder, the results indicate a strong correlation between 
the FPGA and software simulation results, validating the use of the hardware simulation chain.  
Furthermore, the simulation results indicate that the window decoder achieves a BER of 10-12 at a 
SNR of 12 dB, which agrees with the conservative assumption of 1 erroneous bit every second at 
1Tb/s as acceptable.  The implementation results also look promising, despite the reduced 
frequency that was achieved.  This, however, was not addressed in this work, as the focus lay 
primarily on using the FPGA as a tool for the validation and verification of the actual ASIC design 
Nevertheless, the obtained results still indicate great potential and room for future improvements 
and optimizations to fully leverage the design as an IP block for FPGA platforms. 

Likewise, the results obtained from the polar codes’ simulation chains were satisfactory, achieving 
a throughput up to 200 Gb/s, while still exhibiting a good communication performance.  The 
simulation results indicate that the SC and SCL decoders achieve a BER of 10-12 at a SNR of 7.6 
and 6.9 dB respectively.  For this approach, the decoder designs underwent several optimization 
techniques to leverage their full performance and validate them as viable IP blocks for FPGA.  
Additionally, the implementation of these hardware simulation chains was supported with an 
automated framework for generating the polar decoder designs. 
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Chapter 5 List of Abbreviations  

Abbreviation Translation 

ASIC Application-Specific Integrated Circuit 

AWGN Additive White Gaussian Noise 

BER Bit Error Rate 

BPSK Binary Phase Shift Keying 

BRAM Block Random Access Memory 

CRC Cyclic Redundancy Check 

FF Flip-Flop 

FEC Forward Error Correction 

FER Frame Error Rate 

FIFO First-In First-Out 

FPGA Field-Programmable Gate Array 

GNG Gaussian Number Generator 

HARQ Hybrid Acknowledge-Request 

IP Intellectual Property 

LDPC Low Density Parity Check 

LDPC-CC Low Density Parity Check – Convolutional Codes 

LFSR Linear Feedback Shift Register 

LLR Log Likelihood Ratio 

LUT Look-Up Table 

QPSK Quadrature Phase Shift Keying 

RTL Register Transfer Level 

SC Successive Cancellation 

SCL Successive Cancellation List 

SC-LDPC Spatially-Coupled Low Density Parity Check 

SNR Signal-to-Noise Ratio 

UART Universal Asynchronous Receiver-Transmitter 
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